Effect of Melamine-Amphiphile Structure on the Extent of Two-Dimensional Hydrogen-Bonded Networks Incorporating Barbituric Acid

1997 
Four alkyl melamine amphiphiles each containing identical triads of hydrogen-bonding sites (hydrogen donor, acceptor, and donor) but different numbers of alkyl chains were examined in order to determine their monolayer properties and binding behavior towards barbituric acid (BA). Their structural organization in supramolecular assemblies at the air–water interface was affected by the bulkiness of the hydrophobic part of the amphiphile. Aqueous BA and amphiphiles with two or three alkyl chains formed a 1:1 alternate network structure. In contrast, a melamine amphiphile with four alkyl chains formed a 2:1 (BA:amphiphile) complex rather than a 1:1 alternate network structure. The 2:1 complex appears to behave like an independent molecular entity without further networking. The results point to the importance of size matching between the hydrophobic part of the monolayer and the underlying hydrogen-bonded network in order to maintain the overall supramolecular structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    61
    Citations
    NaN
    KQI
    []