Carbon-Induced Surface Transformations of Cobalt

2015 
A reactive force field has been developed that is used in molecular dynamics (MD) studies of the surface transformation of the cobalt (0001) surface induced by an overlayer of adsorbed carbon atoms. Significant surface reconstruction is observed with movement of the Co atoms upward and part of the C atoms to positions below the surface. In a particular C ad atom coverage regime step edge type surface sites are formed, which can dissociate adsorbed CO with a low activation energy barrier. A driving force for the surface transformation is the preference of C adatoms to adsorb in 5- or 6-fold coordinated sites and the increasing strain in the surface because of the changes in surface metal atom–metal atom bond distances with the increasing surface overlayer concentration. The process is found to depend on the nanosize dimension of the surface covered with carbon. When this surface is an overlayer on top of a vacant Co surface, it can reduce stress by displacement of the Co atoms to unoccupied surface positio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    36
    Citations
    NaN
    KQI
    []