Revealing the predictability of intrinsic structure in complex networks

2020 
Structure prediction is an important and widely studied problem in network science and machine learning, finding its applications in various fields. Despite the significant progress in prediction algorithms, the fundamental predictability of structures remains unclear, as networks’ complex underlying formation dynamics are usually unobserved or difficult to describe. As such, there has been a lack of theoretical guidance on the practical development of algorithms for their absolute performances. Here, for the first time, we find that the normalized shortest compression length of a network structure can directly assess the structure predictability. Specifically, shorter binary string length from compression leads to higher structure predictability. We also analytically derive the origin of this linear relationship in artificial random networks. In addition, our finding leads to analytical results quantifying maximum prediction accuracy, and allows the estimation of the network dataset potential values through the size of the compressed network data file. The likelihood of linking within a complex network is of importance to solve real-world problems, but it is challenging to predict. Sun et al. show that the link predictability limit can be well estimated by measuring the shortest compression length of a network without a need of prediction algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    11
    Citations
    NaN
    KQI
    []