Sensitive Probing of Exoplanetary Oxygen via Mid Infrared Collisional Absorption
2020
The collision-induced fundamental vibration-rotation band at 6.4 um is the most significant absorption feature from O2 in the infrared (Timofeyev and Tonkov, 1978; Rinslandet al., 1982, 1989), yet it has not been previously incorporated into exoplanet spectral analyses for several reasons. Either CIAs were not included or incomplete/obsolete CIA databases were used. Also, the current version of HITRAN does not include CIAs at 6.4 um with other collision partners (O2-X). We include O2-X CIA features in our transmission spectroscopy simulations by parameterizing the 6.4 um O2-N2 CIA based on Rinsland et al.(1989) and the O2-CO2 CIA based on Baranov et al. (2004). Here we report that the O2-X CIA may be the most detectable O2 feature for transit observations. For a potentialTRAPPIST-1e analogue system within 5 pc of the Sun, it could be the only O2 detectable signature with JWST (using MIRI LRS) for a modern Earth-like cloudy atmosphere with biological quantities of O2. Also, we show that the 6.4 um O2-X CIA would be prominent for O2-rich desiccated atmospheres (Luger and Barnes, 2015) and could be detectable with JWST in just a few transits. For systems beyond 5 pc, this feature could therefore be a powerful discriminator of uninhabited planets with non-biological "false positive" O2 in their atmospheres - as they would only be detectable at those higher O2 pressures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
1
Citations
NaN
KQI