A weighted multivariate signed-rank test for cluster-correlated data

2009 
A weighted multivariate signed-rank test is introduced for an analysis of multivariate clustered data. Observations in different clusters may then get different weights. The test provides a robust and efficient alternative to normal theory based methods. Asymptotic theory is developed to find the approximate p-value as well as to calculate the limiting Pitman efficiency of the test. A conditionally distribution-free version of the test is also discussed. The finite-sample behavior of different versions of the test statistic is explored by simulations and the new test is compared to the unweighted and weighted versions of Hotelling's T^2 test and the multivariate spatial sign test introduced in [D. Larocque, J. Nevalainen, H. Oja, A weighted multivariate sign test for cluster-correlated data, Biometrika 94 (2007) 267-283]. Finally, a real data example is used to illustrate the theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    11
    Citations
    NaN
    KQI
    []