Land use impact on carbon mineralization is mainly caused by variation of particulate organic matter content rather than of soil structure

2021 
Abstract. Land use is known to exert a dominant impact on a range of essential soil functions like water retention, carbon sequestration, matter cycling and plant growth. At the same time, land use management is known to have a strong influence on soil structure, e.g. through bioturbation, tillage and compaction. However, it is often unclear whether differences in soil structure are the actual cause for differences in soil functions or just co-occurring. This impact of land use (conventional and organic farming, intensive and extensive meadow, extensive pasture) on the relationship between soil structure and short-term carbon mineralization was investigated at the Global Change Exploratory Facility, in Bad Lauchstadt, Germany. Intact topsoil cores (n = 75) were sampled from each land use type at the early growing season. Soil structure and microbial activity were measured using X-ray computed tomography and respirometry, respectively. Grasslands had a greater microbial activity than croplands, both in terms of basal respiration and rate of carbon mineralization during growth. This was caused by a larger amount of particulate organic matter (POM) in the topsoil of grasslands. The frequently postulated dependency of basal respiration on soil moisture was absent even though some cores were apparently water limited. This finding was related to microenvironments shaping microbial hotspots where the decomposition of plant residues was obviously decoupled from water limitation in bulk soil. Differences in microstructural properties between land uses were surprisingly small, mainly due huge variability induced by patterns of compacted clods and loose areas caused by tillage in cropland soils. The most striking difference was larger macropore diameters in grasslands soil due to the presence of large biopores that are periodically destroyed in croplands. Variability of basal respiration among all soil cores amounted to more than one order of magnitude (0.08–1.42 µg CO2-C h−1 g−1 soil) and was best described by POM mass (R2 = 0.53, p  These findings stress that soil structure had little relevance in predicting carbon mineralization in well-aerated soil, as this predominantly took place in microbial hotspots around degrading POM that was detached from the pore structure and moisture of the bulk soil. Land use therefore affects carbon mineralization in well-aerated soil mainly by the amount and quality of labile carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []