MULTIPLE-CASCADE MODEL FOR THE FILLING OF HOLLOW NE ATOMS MOVING BELOW AN AL SURFACE

1995 
Analytic expressions for a multiple-cascade model were derived to study the filling of L and K vacancies of hollow Ne atoms moving in shallow layers of an Al surface. The model requires cross sections for charge transfer into the L shell of the projectile that were determined from molecular-orbital calculations including screening effects of hollow atoms and asymptotic solid-state energies. The analysis accounts for mechanisms of Landau-Zener curve crossing and Fano-Lichten promotion. To describe the transport of the electrons within the solid, absorption and buildup effects were taken into account. The results from the cascade model show good agreement with angular distributions of Ne K Auger electrons recently measured. Attenuation effects were found to produce shifts in the K Auger spectra at varying observation angles. The significant difference previously observed for the mean L-shell occupation numbers during L and K Auger emission is explained by the present model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    54
    Citations
    NaN
    KQI
    []