Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations

2021 
Abstract There are several industrial applications, particularly lid-driven walls, for mixed convection heat transfer characteristics across various cavities. In order to increase the effectiveness of cooling, electrical, electronic and nuclear devices and to monitor the fluid flow and heat exchange of solar thermal installations and thermal storage, such a problem requires further investigation. The main goal of this profound study is to examine the convective heat transfer nature of thermal convection on Newtonian MHD fluid in a lid-driven triangular cavity subjected to heating by a thick triangular wall, including the effects of varying Richardson number, Reynolds number, Hartmann number, and cold circular obstacle. Graphical illustration shows that the upper wall having temperature Th is moving from left to right, whereas inclined sidewalls are adiabatic. Further, a cold circular obstacle containing temperature T∗∗ is placed near the left and right wall of the triangular cavity with T∗∗
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []