Effect of CdSe nanoparticles incorporation on the performance of P3OT organic photovoltaic cells

2016 
Abstract Photoluminescence and photovoltaic properties of P3OT:%CdSe nanocomposite films are investigated as a function of the mass concentration (wt%) of the CdSe nanoparticles (NPs) incorporated in the films. The incorporation of CdSe NPs produces a quenching of the photoluminescence and improves the performance of the nanocomposite solar cells. These effects are explained in terms of exciton dissociation and charge separation occurring at P3OT/CdSe interfaces within the Forster formalism, involving non-radiative energy transfer from the donor (P3OT) to the acceptor (CdSe NPs). An exciton quenching rate constant of 1.4×10 −10  cm 3  s −1 is determined using the Stern–Volmer equation. In addition, scanning electron microscopy (SEM) images reveal that surface morphology is changed by CdSe NPs incorporation, in agreement with FTIR spectra. The current density–voltage ( J – V ) characteristics of ITO/P3OT:%CdSe/Al photovoltaic cells performed for different CdSe concentrations are also reported and indicate a significant improvement of the photovoltaic parameters cells, particularly, the conversion efficiency becomes 20 times greater than that of the cell based on pure polymer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    124
    References
    17
    Citations
    NaN
    KQI
    []