Clinical Significance and Therapeutic Potential of the Programmed DeathLigand-1 (PD-L1) and PD-L2 Expression in Human Colorectal Cancer

2017 
Purpose: The programmed death-1/programmed death ligand (PD-1/PD-L) pathway in T cell activation has been shown to play an important role in tumor evasion from host immunity. The predictive value of PD-L1 and PDL2 expression in colorectal cancer (CRC) remains still under discussion. We analyzed whether negative signaling of infiltrating PD-1-positive T cells through PD-L1 and PD-L2 within the tumor could promote further tumor progression through downregulation of anti-tumor immunity. Methods: We investigated PD-L1 and PD-L2 expression in tumors from patients with CRC and analyzed its prognostic significance with respect to outcome analysis. Results: T cell infiltration was observed in 90.5% of the tumors, with 58% of the patients demonstrating PD-1- positive T cells in their tumors. Patients who developed PD-1-positive T cell infiltration showed increased PD-L1- expression within their tumors than PD-1-T cell negative individuals. Presence of tumor infiltrating PD-1-positive T cells was more pronounced in advanced stage cancers than in early cancers. Ligand expression (PD-L1/PD-L2) in the tumors combined with dense PD-1-positive T cell infiltration was associated with poor prognosis. Multivariate analysis demonstrated that PD-L expression in the tumors was an independent prognostic factor in CRC. Conclusion: The presented results from primary tumors and CRC patient outcome analysis suggest that negative signaling of infiltrating PD-1-positive T cells through PD-L1 expression within the tumor may promote further tumor progression through downregulation of anti-tumor immunity. Co-expression of PD-1 on CD4/Foxp3- positive T cells was found indicating T regulatory cell-mediated mechanisms by which tumor cells can evade immune recognition and destruction. This study demonstrates the importance of strategies inhibiting negative PD-1/ PD-L1 signaling in CRC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []