Computation and parameterization of normalized glandular dose using Geant4

2015 
The average absorbed dose in glandular tissue is the most appropriate parameter for the assessment of the radiation-induced risk during breast imaging. The aims of this work concern:(1) the investigation of the variation effect of any related update to photon cross-section data-bases on the computation of the normalized glandular dose(Dg N) for mammography quality control tests and(2) the proposition of a parameterization method leading to provide Dg N values function of the breast thickness(T) and the particle energy(E) instead of E alone, as normally known. We analyzed the change effect of the photon cross-section data-bases on the computation of Dg N. Those coefficients, generated using the Geant4 Monte Carlo toolkit, were studied over a range of compressed breast thickness of 2–8 cm for monoenergetic(1–120 ke V by 1 ke V intervals) and polyenergetic(23–35 k Vp by 2 k Vp intervals) X-ray beams. Moreover, breast tissue composition ranging from about0% glandular(about 100% adipose) to 100% glandular(0% adipose) was also covered. The successful parameterization of Dg N look-up table function of the breast thickness and energy, will compact its analytical form without loss of accuracy. All parameterization fits resulted in r2 values of 0.999 or better.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []