Radical-driven processes within a peptidic sequence of type I collagen upon single-photon ionisation in the gas phase.

2017 
We report on an experimental single-photon absorption study on gas-phase protonated collagen peptides employing a combination of mass spectrometry and synchrotron radiation. Partial ion yields for the main photoabsorption products vary steadily with photon energy over the range from 14 to 545 eV. At low energy, non-dissociative photoionisation competes with neutral molecule loss from the precursor ion, whereas fragmentation of the peptide backbone dominates at soft X-ray energies. Neutral molecule losses from the ionised peptide are found to have low energy barriers and most likely involve amino-acid residue side-chains with radical character, in particular aspartic acid. A particularly interesting finding is photoinduced loss of proline hydroxylation. The loss of this typical collagen post-translational modification might play a destabilizing role in the collagen structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    14
    Citations
    NaN
    KQI
    []