Magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanochain with enhanced sensitivity for detection of Siglec-15.

2021 
Abstract Noble metal nanoparticles could provide a significant gain in sensitivity of surface plasmon resonance (SPR) sensor by electromagnetic field coupling between the localized plasmon resonance of nanoparticles and gold film. A facile and cost-effective SPR sensor based on magnetic field-aligned Fe3O4-coated silver magnetoplasmonic nanoparticles (Ag@MNPs) nanochain (M-Ag@MNPs) was proposed to improve the sensitivity of the sensor, which gave access to detect clinical targets at low concentration. Optimization experiments proved that 80 ng mL−1 M-Ag@MNPs-based SPR sensor showed high refractive index sensitivity and increased detection accuracy and quality factor when comparing with those of bare gold. Sialic acid binding Ig like lectins-15 (Siglec-15) was used as proof of concept to verify the sensitivity enhancement performance of M-Ag@MNPs in the actual detection process. SPR angle shifts of M-Ag@MNPs/gold sensor were significantly higher than those of traditional gold sensor under the same concentration of Siglec-15, which was consistent with previous performance analysis. Also, the detection limit of M-Ag@MNPs/gold sensor was calculated to be 1.36 pg mL−1. All these results had proved that aligning M-Ag@MNPs onto the gold chip could improve the performance of the SPR sensor and achieve sensitive detection of small amounts of clinical biomarkers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []