Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.

2006 
Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the “top contact”, dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as “control” junctions of the type carbon/TiO2/Ag/Au. The polarity of the “switching” is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions b...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    52
    Citations
    NaN
    KQI
    []