A Bidirectional Neural Interface IC With Chopper Stabilized BioADC Array and Charge Balanced Stimulator

2016 
We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180 nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order $\Delta \Sigma$ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5 V supply, the analog and digital circuits in each recording channel draw on average $\text{1.54}\; \mu {\rm A}$ and $\text{2.13} \;\mu {\rm A}$ of supply current, respectively. The bioADCs achieve an SNR of $\text{58 dB}$ and a SFDR of ${>} \text{70 dB}$ , for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo . Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    19
    Citations
    NaN
    KQI
    []