Location-Based Parallel Tag Completion for Geo-tagged Social Image Retrieval

2015 
Benefit from tremendous growth of user-generated content, social annotated tags get higher importance in organization and retrieval of large scale image database on Online Sharing Websites (OSW). To obtain high-quality tags from existing community contributed tags with missing information and noise, tag-based annotation or recommendation methods have been proposed for performance promotion of tag prediction. While images from OSW contain rich social attributes, existing studies only utilize the relations between visual content and tags to construct global information completion models. In this paper, beyond the image-tag relation, we take full advantage of the ubiquitous GPS locations and image-user relationship, to enhance the accuracy of tag prediction and improve the computational efficiency. For GPS locations, we define the popular geo-locations where people tend to take more images as Points of Interests (POI), which are discovered by mean shift approach. For image-user relationship, we integrate a localized prior constraint, expecting the completed tag sub-matrix in each POI to maintain consistency with users' tagging behaviors. Based on these two key issues, we propose a unified tag matrix completion framework which learns the image-tag relation within each POI. To solve the proposed model, an efficient proximal sub-gradient descent algorithm is designed. The model optimization can be easily parallelized and distributed to learn the tag sub-matrix for each POI. Extensive experimental results reveal that the learned tag sub-matrix of each POI reflects the major trend of users' tagging results with respect to different POIs and users, and the parallel learning process provides strong support for processing large scale online image database.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    11
    Citations
    NaN
    KQI
    []