Integration of micro-fabricated atomic magnetometers on military systems

2016 
A new generation of ultra-high sensitivity magnetic sensors based on innovative micro-electromechanical systems (MEMS) are being developed and incorporated into military systems. Specifically, we are currently working to fully integrate the latest generation of MicroFabricated Atomic Magnetometers (MFAMs) developed by Geometrics on defense mobility systems such as unmanned systems, military vehicles and handheld units. Recent reductions in size, weight, and power of these sensors has enabled new deployment opportunities for improved sensitivity to targets of interest, but has also introduced new challenges associated with noise mitigation, mission configuration planning, and data processing. Our work is focused on overcoming the practical aspects of integrating these sensors with various military platforms. Implications associated with utilizing these combined sensor systems in working environments are addressed in order to optimize signal-to-noise ratios, detection probabilities, and false alarm mitigation. Specifically, we present collaborative work that bridges the gap between commercial specialists and operation platform integration organizations including magnetic signature characterization and mitigation as well as the development of simulation tools that consider a wide array of sensor, environmental, platform, and mission-level parameters. We discuss unique deployment concepts for explosive hazard target geolocation, and data processing. Applications include configurations for undersea and underground threat detection - particularly those associated with stationary or mobile explosives and compact metallic targets such as munitions, subsea threats, and other hazardous objects. We show the potential of current and future features of miniaturized magnetic sensors including very high magnetic field sensitivities, bandwidth selectivity, and array processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    10
    Citations
    NaN
    KQI
    []