A perspective on topological nanophotonics: Current status and future challenges

2019 
Topological photonic systems, with their ability to host states protected against disorder and perturbation, allow us to do with photons what topological insulators do with electrons. Topological photonics can refer to electronic systems coupled with light or purely photonic setups. By shrinking these systems to the nanoscale, we can harness the enhanced sensitivity observed in nanoscale structures and combine this with the protection of the topological photonic states, allowing us to design photonic local density of states and to push towards one of the ultimate goals of modern science: the precise control of photons at the nanoscale. This is paramount for both nanotechnological applications and fundamental research in light matter problems. For purely photonic systems, we work with bosonic rather than fermionic states, so the implementation of topology in these systems requires new paradigms. Trying to face these challenges has helped in the creation of the exciting new field of topological nanophotonic...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    116
    References
    83
    Citations
    NaN
    KQI
    []