Optimal Threshold-Based Multi-Trial Error/Erasure Decoding with the Guruswami-Sudan Algorithm

2011 
Traditionally, multi-trial error/erasure decoding of Reed-Solomon (RS) codes is based on Bounded Minimum Distance (BMD) decoders with an erasure option. Such decoders have error/erasure tradeoff factor L=2, which means that an error is twice as expensive as an erasure in terms of the code's minimum distance. The Guruswami-Sudan (GS) list decoder can be considered as state of the art in algebraic decoding of RS codes. Besides an erasure option, it allows to adjust L to values in the range 1 =1 times. We show that BMD decoders with z_BMD decoding trials can result in lower residual codeword error probability than GS decoders with z_GS trials, if z_BMD is only slightly larger than z_GS. This is of practical interest since BMD decoders generally have lower computational complexity than GS decoders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []