Evidence for the splicing of grablovirus transcripts reveals a putative novel open reading frame.

2019 
Grapevine red blotch virus (GRBV) is type member of the newly identified genus Grablovirus. It possesses a single-stranded circular DNA genome of around 3200 nucleotides encoding three open reading frames (ORFs) in both the virion sense, the V1 (CP), V2 and V3, and complementary sense, C1 (RepA), C2 and C3. As shown for members of the genus Mastrevirus, the C1 and C2 ORFs are predicted to fuse through splicing to form a replication-associated protein (Rep). Data obtained using high-throughput sequencing (RNA-Seq) of three RNA-enriched populations, extracted from GRBV-infected grapevine (Vitis vinifera), confirmed the presence of the predicted C1–C2 intron (nts 2288–2450), but in addition identified a larger virion-sense intron (nts 251–589) spanning the V2 ORF. Evidence for both introns in a number of isolates was supported by bioinformatic analysis of publicly available datasets (n=20). These observations were further supported by RT-PCR analyses in both GRBV-infected grapevine and transient expression assays where GRBV genome segments were agro-inoculated onto Nicotiana benthamiana. The donor site of the virion-sense intron is located within two small ORFs, V0 and V02, while the acceptor site is two-thirds along the V2 ORF. Splicing at these positions is predicted to delete the N terminus of the encoded V2 protein. Comparative analyses of full-length GRBV sequences and the related tentative grabloviruses Prunus geminivirus A and wild Vitis virus 1 support the existence of both introns and V0. The probable regulatory role of these introns in the GRBV infection cycle is discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    1
    Citations
    NaN
    KQI
    []