Low-dose cisplatin converts the tumor microenvironment into a permissive state for HSVtk-induced antitumor immunity in HPV16-related tonsillar carcinoma

2015 
Abstract An adenovirus harboring the HSV thymidine kinase (HSVtk) gene under the regulation of a trans -splicing ribozyme that targets telomerase is cytotoxic to cancer cells because it inhibits DNA replication (Ad5mTR). Furthermore, it induces anti-tumor immunity by activating cytotoxic T cells. Because multiple chemotherapeutic agents also activate cytotoxic T-cell immunity during the direct killing process of tumor cells, we herein explored whether low-dose cisplatin could synergize with cytotoxic Ad5mTR to potentiate its therapeutic effect by boosting anti-tumor immunity in a murine HPV16-associated tonsillar carcinoma model. Tumor regression was enhanced when low-dose (1 mg/kg) cisplatin was added to suicide gene therapy using Ad5mTR. Meanwhile, 1 mg/kg cisplatin alone had no tumor-suppressive effects and did not result in any systemic toxicity. Thus, cisplatin along with Ad5mTR improved tumor clearance by increasing the number of E7-specific CD8+ T cells. Specifically, analysis of the tumors and lymph nodes supported improved immune clearance by increasing the number of E7-specific CD8+ T cells inside tumors (40%, P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    6
    Citations
    NaN
    KQI
    []