Ultra-low density three-dimensional nano-silicon carbide architecture with high temperature resistance and mechanical strength

2020 
Abstract Silicon carbide nanotube/nanowires (SiCNT/NWs) exhibit excellent mechanical properties in extreme thermal and oxidative environments. Here, we demonstrate an easily scalable process to synthesize millimeter-sized three-dimensional architectures using SiCNT/NW building blocks to create materials with excellent mechanical strength, stiffness, and resiliency with ultra-low density. The structure of these macro-materials is initially synthesized using carbon nanotubes, then utilizing the shape memory synthesis (SMS) method are converted to nano-silicon carbide. It is proposed that using this technique, any micro-structure can initially be created with nano-carbon building blocks, optimized for the necessary morphological features of a specific application. Here, the synthesis and subsequent SiCNT/NW conversion of carbon nanotube spheres and graphene foam, demonstrates the ability to use a simple, cost-effective conversion method to create a material that can mechanically perform in extreme environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []