Characterization of rheological properties of colloidal zirconia
2007
Abstract Dynamic viscosity of aqueous suspensions of nanosized zirconia (ZrO 2 ) have been studied for the low volume fraction range. The specific surface area of dry powder was determined from the BET method. The zeta potential of zirconia particles as a function of pH was measured by the microelectrophoretic method. The isoelectric point found in this way was 4.7. The particle density in aqueous suspensions was found by the dilution method. The dynamic viscosity of suspensions was measured by using a capillary viscometer that eliminated the sedimentation effects. Experimental data showed that for dilute zirconia suspension, the relative viscosity increased more rapidly with the volume fraction than that the Einstein formula predicts. This allowed one to calculate the specific hydrodynamic volume of particles in the suspensions and their apparent density. It was found that particles forming zirconia suspensions were composed of aggregates having porosity of 40–50%. The size of the primary particles forming these aggregates was 0.2 μm that agrees well with the BET specific surface data. The influence of an anionic polyelectrolyte:polysodium 4-styrenesulfonate (PSS) on zirconia suspension viscosity also was studied. First the PSS viscosity alone was measured as a function of its volume fraction for various ionic strength of the solutions. The data were interpreted in terms of the flexible rod model of the polyelectrolyte. Then, the viscosity of ZrO 2 in PSS solutions of fixed concentration was measured as a function of the concentration of zirconia. It was revealed that the viscosity of the mixtures was proportional to the product of the zirconia and polyelectrolyte viscosities taken separately.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
16
Citations
NaN
KQI