Identification of cells expressing Calcitonins A and B, PDF and ACP in Locusta migratoria using cross-reacting antisera and in situ hybridization.

2021 
This work was initiated because an old publication suggested that electrocoagulation of four paraldehyde fuchsin positive cells in the brain of Locusta migratoria might produce a diuretic hormone, the identity of which remains unknown, since none of the antisera to the various putative Locusta diuretic hormones recognizes these cells. The paraldehyde fuchsin positive staining suggests a peptide with a disulfide bridge and the recently identified Locusta calcitonins have both a disulfide bridge and are structurally similar to calcitonin-like diuretic hormone. In situ hybridization and antisera raised to calcitonin-A and -B were used to show where these peptides are expressed in Locusta. Calcitonin-A is produced by neurons and neuroendocrine cells that were previously shown to be immunoreactive to an antiserum to pigment dispersing factor (PDF). The apparent PDF-immunoreactivity in these neurons and neuroendocrine cells is due to crossreactivity with the calcitonin-A precursor. As confirmed by both an PDF-precursor specific antiserum and in situ hybridisation, those calcitonin-A expressing cells do not express PDF. Calcitonin B is expressed by numerous enteroendocrine cells in the midgut as well as the midgut caeca. A guinea pig antiserum to calcitonin A seemed quite specific as it recognized only the calcitonin A expressing cells. However, rabbit antisera to calcitonin-A and-B both crossreacted with neuroendocrine cells in the brain that produce ACP (AKH/corazonin-related peptide), this is almost certainly due to the common C-terminal dipeptide SPamide that is shared between Locusta calcitonin-A, calcitonin-B and ACP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []