Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning

2021 
Research on autonomous obstacle avoidance of drones has recently received widespread attention from researchers. Among them, an increasing number of researchers are using machine learning to train drones. These studies typically adopt supervised learning or reinforcement learning to train the networks. Supervised learning has a disadvantage in that it takes a significant amount of time to build the datasets, because it is difficult to cover the complex and changeable drone flight environment in a single dataset. Reinforcement learning can overcome this problem by using drones to learn data in the environment. However, the current research results based on reinforcement learning are mainly focused on discrete action spaces. In this way, the movement of drones lacks precision and has somewhat unnatural flying behavior. This study aims to use the soft-actor-critic algorithm to train a drone to perform autonomous obstacle avoidance in continuous action space using only the image data. The algorithm is trained and tested in a simulation environment built by Airsim. The results show that our algorithm enables the UAV to avoid obstacles in the training environment only by inputting the depth map. Moreover, it also has a higher obstacle avoidance rate in the reconfigured environment without retraining.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []