Transsaccadic feature interactions in multiple reference frames: an fMRIa study

2018 
Transsaccadic integration of visual features can operate in various frames of reference, but the corresponding neural mechanisms have not been differentiated. A recent fMRIa (adaptation) study identified two cortical regions in supramarginal gyrus (SMG) and extrastriate cortex that were sensitive to transsaccadic changes in stimulus orientation (Dunkley et al., 2016). Here, we modified this paradigm to identify the neural correlates for transsaccadic comparison of object orientations in: 1) Spatially Congruent (SC), 2) Retinally Congruent (RC) or 3) Spatially Incongruent (SI)) coordinates. Functional data were recorded from 12 human participants while they observed a grating (oriented 45 or 135 degrees) before a saccade, and then judged whether a post-saccadic grating (in SC, RC, or SI configuration) had the same or different orientation. Our analysis focused on areas that showed a significant repetition suppression (Different > Same) or repetition enhancement (Same > Different) BOLD responses. Several cortical areas were significantly modulated in all three conditions: premotor/motor cortex (likely related to the manual response), and posterior-middle intraparietal sulcus. In the SC condition, uniquely activated areas included left SMG and left lateral occipitotemporal gyrus (LOtG). In the RC condition, unique areas included inferior frontal gyrus and the left lateral BA 7. In the SI condition, uniquely activated areas included the frontal eye field, medial BA 7, and right LOtG. Overall, the SC results were significantly different from both RC and SI. These data suggest that different cortical networks are used to compare pre- and post-saccadic orientation information, depending on the spatial nature of the task.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    136
    References
    3
    Citations
    NaN
    KQI
    []