Role of kosmotrope-chaotrope interactions at micelle surfaces on the stabilization of lyotropic nematic phases

2016 
Three lyotropic quaternary systems of ionic surfactants were prepared to investigate the role of kosmotrope-chaotrope interactions at the micelle surfaces on stabilizing the different nematic phases. The ionic surfactants were potassium laurate (KL), sodium dodecylsulfate (SDS) and tetradecyltrimethylammonium bromide (TDTMABr), where KL is a kosmotrope surfactant, and others are chaotrope. The first system consisted of KL/decanol (DeOH)/water/alkali sulfate and the second of SDS/DeOH/water/alkali sulfate. The third system was prepared by adding sodium salts of chaotropic or kosmotropic anions to the primary mixture of TDTMABr/DeOH/water, separately. The characteristic textures of discotic nematic (N D ), biaxial nematic (N B ) and calamitic nematic (N C ) phases were identified under polarizing light microscope. Laser conoscopy was employed to determine the uniaxial-to-biaxial phase transitions. The kosmotrope-kosmotrope or chaotrope-chaotrope interactions between the head groups of the surfactants and the ions of the electrolytes led to the stabilization of the N D phase. On the other hand, kosmotrope-chaotrope interactions stabilize the N B and/or N C phases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    14
    Citations
    NaN
    KQI
    []