AN EXACT DYNAMIC STIFFNESS MATRIX FOR A TWO-PART BEAM-MASS SYSTEM AND ITS APPLICATIONS

2004 
Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first approach is based on matrix transformation while the second one is a direct approach in which the kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a structural member consisting of two different beam segments between which there is a rigid mass element that may have rotary inertia. Numerical checks to show that the two methods generate identical dynamic stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results are discussed and the paper concludes with some remarks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    3
    Citations
    NaN
    KQI
    []