Formation of α-chiral centers by asymmetric β-C(sp3)–H arylation, alkenylation, and alkynylation

2017 
The enzymatic β-C–H hydroxylation of the feedstock chemical isobutyric acid has enabled the asymmetric synthesis of a wide variety of polyketides. The analogous transition metal–catalyzed enantioselective β-C–H functionalization of isobutyric acid–derived substrates should provide a versatile method for constructing useful building blocks with enantioenriched α-chiral centers from this abundant C-4 skeleton. However, the desymmetrization of ubiquitous isopropyl moieties by organometallic catalysts has remained an unanswered challenge. Herein, we report the design of chiral mono-protected aminomethyl oxazoline ligands that enable desymmetrization of isopropyl groups via palladium insertion into the C(sp 3 )–H bonds of one of the prochiral methyl groups. We detail the enantioselective β-arylation, -alkenylation, and -alkynylation of isobutyric acid/2-aminoisobutyric acid derivatives, which may serve as a platform for the construction of α-chiral centers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    117
    Citations
    NaN
    KQI
    []