Bioengineering Functional Copolymers. XVII. Interaction of Organoboron Amide-Ester Branched Derivatives of Poly(Acrylic Acid) with Cancer Cells

2011 
Novel bioengineering functional organoboron polymers were synthesized by 1) amidolysis of poly(acrcylic acid) (PAA) with 2-aminoethyldiphenyl borinate (2-AEPB), 2) esterification of organoboron PAA polymer (PAA-B) with a-hydroxy-methoxypoly(ethylene oxide) (PEO) as a compatibilizer and 3) conjugation of organoboron PEO branches (PAA-B-PEO) with folic acid (FA) as a targeting agent. Structure and composition of the synthesized polymers were characterized by FTIR-ATR and 1H (13C) NMR spectroscopy, chemical and physical analysis methods. Anti-tumor activity of organoboron functional polymer and its complex with FA (PAA-B-PEO-F) against cancer and normal cells were evaluated by using different biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immune staining, light and fluorescence inverted microscope analyses. It was found that citotoxicity and apoptotic/necrotic effects of polymers significantly depend on the structure and composition of studied polymers, and increase the following raw: PAA << PAA-B < PAA-B-PEO < PAA-B-PEO-F. Among them, PAA-B-PEO-F complex at 400 mg mL–1 concentration as a therapeutic drug exhibits minimal toxicity toward the nor-mal cells, but influential for HeLa cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    4
    Citations
    NaN
    KQI
    []