Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria

2014 
The screening of pollutant-degrading bacteria are limited due to most of bacteria in the natural environment cannot be cultivated. For the purpose of resuscitating and stimulating “viable but non-culturable” (VBNC) or uncultured bacteria, Micrococcus luteus proteins are more convenient and cost-effective than purified resuscitation-promoting factor (Rpf) protein. In this study, medium composition and culture conditions were optimized by using statistical experimental design and analysis to enhance protein production by M. luteus. The most important variables influencing protein production were determined using the Plackett-Burman design (PBD) and then central composite design (CCD) was adopted to optimize medium composition and culture conditions to achieve maximum protein yield. Results showed that the maximum protein yield of 25.13 mg/L (vs. 25.66 mg/L predicted) was obtained when the mineral solution, Lithium L-lactate, initial pH and incubation time were set at 1.5 ml/L, 8.75 g/L, 7.5 and 48 h, respectively. The predicated values calculated with the model were very close to the experimental values. Protein production was obviously increased with optimization fitting well with the observed fluorescence intensity. These results verified the feasibility and accuracy of this optimization strategy. This study provides promising information for exploring highly desirable pollutant-degrading microorganisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    10
    Citations
    NaN
    KQI
    []