Correction of numerical aperture effect on reflection phase measurement using a thick-gap Fabry–Perot etalon

2017 
We propose a method for the measurement of the reflection phase using a thick-gap Fabry–Perot (FP) etalon interferometry technique with correction for the numerical aperture effect of the optical setup. The setup is first calibrated using a known sample by comparing the reflectance from a two-beam interference model for the FP etalon with experimental data. We then apply the correction to a sample of interest and obtain the reflection phase of the sample. Our method can be used to measure the reflection phase of a small sample and could lead to practical applications in optical characterization of metamaterials. Moreover, the principle of our approach could be generalized to other systems in the correction of numerical aperture effect due to microscopic objectives.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    4
    Citations
    NaN
    KQI
    []