Analysis of frequency division in microstrip circuits by using the FDTD method

2008 
The accurate time-domain simulation of the nonlinear dynamics of circuits containing distributed elements is of great interest. Specially at high frequencies, it is essential to consider phenomena, such as crosstalk, packaging effects, and electromagnetic interaction between active and passive elements. These effects are mainly due to the distribute components of the circuit. Therefore, the accuracy in the instability or oscillation analysis of nonlinear circuits is often limited by the models used for such elements. Commercial simulators based on the equivalent-circuit approach hardly take into account the mentioned effects. In this work, the finite-difference time-domain (FDTD) method is applied to the nonlinear simulation of a diode-based microstrip circuit exhibiting a parametric frequency division by two. The FDTD method rigorously solves Maxwell's curl equations in the time domain providing a full-wave characterization of the distributed elements of the circuit. In the example considered, a relatively low operating frequency has been selected to allow a reliable comparison between the results obtained by the proposed technique and those provided by a circuit-based commercial simulator. © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1300–1302, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23352
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []