Identification of 48 full-length MHC-DAB functional alleles in miiuy croaker and evidence for positive selection

2016 
Major histocompatibility complex (MHC) molecules play a vital role in the immune response and are a highly polymorphic gene superfamily in vertebrates. As the molecular marker associated with polymorphism and disease susceptibility/resistance, the polymorphism of MHC genes has been investigated in many tetrapods and teleosts. Most studies were focused on the polymorphism of the second exon, which encodes the peptide-binding region (PBR) in the α1- or β1-domain, but few studies have examined the full-length coding region. To comprehensive investigate the polymorphism of MHC gene, we identified 48 full-length miiuy croaker (Miichthys miiuy) MHC class IIB (Mimi-DAB) functional alleles from 26 miiuy croaker individuals. All of the alleles encode 34 amino acid sequences, and a high level of polymorphism was detected in Mimi-DAB alleles. The rate of non-synonymous substitutions (dN) occurred at a significantly higher frequency than that of synonymous substitutions (dS) in the PBR, and this result suggests that balancing selection maintains polymorphisms at the Mimi-DAB locus. Phylogenetic analysis based on the full-length and exon 2 sequences of Mimi-DAB alleles both showed that the Mimi-DAB alleles were clustered into two major groups. A total of 19 positive selected sites were identified on the Mimi-DAB alleles after testing for positive selection, and 14 sites were predicted to be associated with antigen-binding sites, which suggests that most of selected sites are significant for disease resistance. The polymorphism of Mimi-DAB alleles provides an important resource for analyzing the association between the polymorphism of MHC gene and disease susceptibility/resistance, and for researching the molecular selective breeding of miiuy croaker with enhanced disease resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []