Provenance of bentonite layers in the Palaeocene strata of the Central Basin, Svalbard: implications for magmatism and rifting events around the onset of the North Atlantic Igneous Province
2016
Abstract A fold-and-thrust belt developed between Greenland and Svalbard during the Palaeogene, with an associated foreland basin forming in what is now Spitsbergen. This Central Basin is comprised of the Van Mijenfjorden Group, a ~2.3 km thick sandstone-shale dominated succession that contains prominent and laterally continuous bentonite layers in the lower formations. These altered tephra layers can be used as stratigraphic markers that connect the basin development with regional explosive volcanism and changes to relative plate motions. We sampled and analysed bentonites from nine borehole cores across the Central Basin. Each layer shows evidence of alteration, with mobile elements such as alkali and alkali earth metals particularly disrupted. However, immobile elements including rare earth elements (REE) and preserved igneous minerals retain a magmatic signature, allowing for comparisons with potential volcanic sources to be made. The majority of bentonites are both evolved and strongly alkaline, with chemical signatures that are much closer to the continental rift events around Ellesmere Island and North Greenland than to the early activity of the North Atlantic Igneous Province (NAIP). There is a clear difference between tephra layers in the mid Palaeocene versus late Palaeocene strata. The early bentonites have a REE signature comparable to the volcanics of the Kap Washington Group exposed in North Greenland. The later bentonites have likely come from volcanic centres in the Nares Strait that are also the source of abundant volcaniclastic sediments in the Judge Daly Promontory, Ellesmere Island. These findings suggest that a mid to late Palaeocene change in locus of volcanic provenance may reflect changes in relative plate motions related to the formation of the West Spitsbergen fold-and-thrust belt and the emplacement of the NAIP. However, the lack of bentonites matching NAIP sources suggests that explosive volcanism was of insufficient magnitude to lead to deposition in the Central Basin at this time.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
78
References
8
Citations
NaN
KQI