Cenerimod, a selective S1P1 receptor modulator, improves organ-specific disease outcomes in animal models of Sjögren's syndrome.

2021 
Background Sjogren's syndrome is a systemic autoimmune disease characterized by immune cells predominantly infiltrating the exocrine glands and frequently forming ectopic lymphoid structures. These structures drive a local functional immune response culminating in autoantibody production and tissue damage, associated with severe dryness of mucosal surfaces and salivary gland hypofunction. Cenerimod, a potent, selective and orally active sphingosine-1-phosphate receptor 1 modulator, inhibits the egress of lymphocytes into the circulation. Based on the mechanism of action of cenerimod, its efficacy was evaluated in two mouse models of Sjogren's syndrome. Methods Cenerimod was administered in two established models of Sjogren's syndrome; firstly, in an inducible acute viral sialadenitis model in C57BL/6 mice, and, secondly, in the spontaneous chronic sialadenitis MRL/lpr mouse model. The effects of cenerimod treatment were then evaluated by flow cytometry, immunohistochemistry, histopathology and immunoassays. Comparisons between groups were made using a Mann-Whitney test. Results In the viral sialadenitis model, cenerimod treatment reduced salivary gland immune infiltrates, leading to the disaggregation of ectopic lymphoid structures, reduced salivary gland inflammation and preserved organ function. In the MRL/lpr mouse model, cenerimod treatment decreased salivary gland inflammation and reduced T cells and proliferating plasma cells within salivary gland ectopic lymphoid structures, resulting in diminished disease-relevant autoantibodies within the salivary glands. Conclusions Taken together, these results suggest that cenerimod can reduce the overall autoimmune response and improve clinical parameters in the salivary glands in models of Sjogren's syndrome and consequently may reduce histological and clinical parameters associated with the disease in patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []