Intrinsic and Extrinsic Defect-Related Excitons in TMDCs.

2020 
We investigate the excitonic peak associated with defects and disorder in low-temperature photoluminescence of monolayer transition metal dichalcogenides (TMDCs). To uncover the intrinsic origin of defect-related (D) excitons, we study their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC monolayer MoS2. Our results suggest that D excitons are neutral excitons bound to ionized donor levels, likely related to sulfur vacancies, with a density of 7 x 10(11) cm(-2). To study the extrinsic contribution to D excitons, we controllably deposit oxygen molecules in situ onto the surface of MoS2 kept at cryogenic temperature. We find that, in addition to trivial p-doping of 3 x 10(12) cm(-2), oxygen affects the D excitons, likely by functionalizing the defect sites. Combined, our results uncover the origin of D excitons, suggest an approach to track the functionalization of TMDCs, to benchmark device quality, and pave the way toward exciton engineering in hybrid organic-inorganic TMDC devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    22
    Citations
    NaN
    KQI
    []