Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p–i–n Heterojunction Solar Cells

2018 
The p–i–n quantum dot (QD) solar cells were fabricated through the single-step deposition of both of its p-type and light absorbing quantum layers. The hole transport and light absorbing layers of these devices were made by the p- and n-type PbS QDs, which were functionalized with mercaptopropionic acid and different halide, hybrid, and perovskite ligands, respectively. Fabrication of such p–i–n devices by the single-step deposition of pre-exchanged colloidal QDs had not been fully investigated so far because of the low progression of ligand exchange processes, weak colloidal stability of pre-exchanged QDs in desired solvents, and remaining of the ligand exchange products along with particles. However, we showed that the type of ligand complexes, amino acid products of ligand exchange, and protic solvents are highly effective for increasing the ligand exchange progression and preparation of high colloidal stability QDs with superior photoluminescence properties. As well, the surface chemistry investigatio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    4
    Citations
    NaN
    KQI
    []