Origin of extended UV stability of 2D atomic layer titania-based perovskite solar cells unveiled by ultrafast spectroscopy

2019 
The inherent instability of UV-induced degradation in TiO2-based perovskite solar cells was largely improved by replacing the anatase-phase compact TiO2 layer with an atomic sheet transport layer (ASTL) of two-dimensional (2D) Ti1−δO2. The vital role of microscopic carrier dynamics that govern the UV stability of perovskite solar cells was comprehensively examined in this work by performing time-resolved pump–probe spectroscopy. In conventional perovskite solar cells, the presence of a UV-active oxygen vacancy in compact TiO2 prohibits current generation by heavily trapping electrons after UV degradation. Conversely, the dominant vacancy type in the 2D Ti1−δO2 ASTL is a titanium vacancy, which is a shallow acceptor and is not UV-sensitive. Therefore, it significantly suppresses carrier recombination and extends UV stability in perovskite solar cells with a 2D Ti1−δO2 ASTL. Other carrier dynamics, such as electron diffusion, electron injection, and hot hole transfer processes, were found to be less affecte...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []