Modelling of synchrotron SAXS patterns of silicalite-1 zeolite during crystallization.

2011 
Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse core–shell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situlight scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []