TRIB3 alters endoplasmic reticulum stress-induced β-cell apoptosis via the NF-κB pathway

2014 
Abstract Objective To examine the effect of TRIB3 on endoplasmic reticulum stress induced β-cell apoptosis and to investigate the mechanism with a specific emphasis on the role of NF-κB pathway. Materials/Methods We investigated the effect of TRIB3 on ER stress-induced β-cell apoptosis in INS-1 cells and primary rodent islets. The potential role of TRIB3 in ER stress inducer thapsigargin (Tg)-induced β-cell apoptosis was assessed using overexpression and siRNA knockdown approaches. Inducible TRIB3 β-cells, regulated by the tet-on system, were used for sub-renal capsule transplantation in streptozotocin (STZ)-diabetic mice, to study the effect of TRIB3 on ER stress-induced β-cell apoptosis in vivo . Apoptosis was determined by TUNEL staining both in vivo and in vitro , while the molecular mechanisms of NF-κB activation were investigated. Results TRIB3 was induced in ER-stressed INS-1 cells and rodent islets, and its overexpression was accompanied by increased β-cell apoptosis. Specifically, TRIB3 overexpression enhanced Tg-induced INS-1 derived β-cell apoptosis both in vitro and in sub-renal capsular transplantation animal model. Additionally, knockdown of Trib3 blocked Tg-induced apoptosis. Mechanistically, the induction of TRIB3 during ER stress resulted in the activation of NF-κB and aggravated INS-1 derived β-cell apoptosis, while inhibiting the NF-κB pathway significantly abrogated this response and prevented β-cell apoptosis, both in vitro and in sub-renal capsular transplantation animal model. Conclusion TRIB3 mediated ER stress-induced β-cell apoptosis via the NF-κB pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    31
    Citations
    NaN
    KQI
    []