Structure of neutron stars in massive scalar-tensor gravity

2020 
We compute families of spherically symmetric neutron-star models in two-derivative scalar-tensor theories of gravity with a massive scalar field. The numerical approach we present allows us to compute the resulting spacetimes out to infinite radius using a relaxation algorithm on a compactified grid. We discuss the structure of the weakly and strongly scalarized branches of neutron-star models thus obtained and their dependence on the linear and quadratic coupling parameters $\alpha_0$, $\beta_0$ between the scalar and tensor sectors of the theory, as well as the scalar mass $\mu$. For highly negative values of $\beta_0$, we encounter configurations resembling a "gravitational atom", consisting of a highly compact baryon star surrounded by a scalar cloud. A stability analysis based on binding-energ calculations suggests that these configurations are unstable and we expect them to migrate to models with radially decreasing baryon density {\it and} scalar field strength.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    94
    References
    0
    Citations
    NaN
    KQI
    []