Immunotherapy treatment outcome prediction in metastatic melanoma through an automated multi-objective delta-radiomics model.

2021 
Abstract Based on recent studies, immunotherapy led by immune checkpoint inhibitors has significantly improved the patient survival rate and effectively reduced the recurrence risk. However, immunotherapy has different therapeutic effects for different patients, leading to difficulties in predicting the treatment response. Conversely, delta-radiomic features, which measure the difference between pre- and post-treatment through quantitative image features, have proven to be promising descriptors for treatment outcome prediction. Consequently, we developed an effective model termed as the automated multi-objective delta-radiomics (Auto-MODR) model for the prediction of immunotherapy response in metastatic melanoma. In Auto-MODR, delta-radiomic features and traditional radiomic features were used as inputs. Furthermore, a novel automated multi-objective model was developed to obtain more reliable and balanced results between sensitivity and specificity. We conducted extensive comparisons with existing studies on treatment outcome prediction. Our method achieved an area under the curve (AUC) of 0.86 in a cross-validation study and an AUC of 0.73 in an independent study. Compared with the model using conventional radiomic features (pre- and post-treatment) only, better performance can be obtained when conventional radiomic and delta-radiomic features are combined. Furthermore, Auto-MODR outperformed the currently available radiomic strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []