Solution‐processed p‐SnSe/n‐SnSe2 hetero‐structure layers for ultrasensitive NO2 detection

2020 
The formation of semiconductor heterostructures is an effective approach to achieve high performance in electrical gas sensing. However, such heterostructures are usually prepared via multi-step procedures. In this contribution, by taking advantage of the crystal phase-dependent electronic property of SnSex based materials, we report a one-step colloid method for the preparation of SnSe(x%)/SnSe2 (100-x%) p-n heterostructures, with x approximately 30, 50, and 70. The obtained materials with solution processability were successfully fabricated into NO2 sensors. Among them, the SnSe(50 %)/SnSe2 (50 %) based sensor with an active layer thickness of 2 mum exhibited the highest sensitivity to NO2 (30 % at 0.1 ppm) with a limit of detection (LOD) down to 69 ppb at room temperature (25 degrees C). This was mainly attributed to the formation of p-n junctions that allowed for gas-induced modification of the junction barriers. Under 405 nm laser illumination, the sensor performance was further enhanced, exhibiting a 3.5 times increased response toward 0.1 ppm NO2 , along with a recovery time of 4.6 min.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []