A new estimate for the age of highly-siderophile element retention in the lunar mantle from late accretion

2021 
Abstract Subsequent to the Moon's formation, late accretion to the terrestrial planets strongly modified the physical and chemical nature of silicate crusts and mantles. This alteration came in the form of melting through impacts, as well as the belated addition of volatiles and the highly siderophile elements (HSEs). Even though late accretion is well established as having been an important process in the evolution of the young solar system, its intensity and temporal decline remain subject to debate. Much of this deliberation hinges on what can be inferred about late accretion to the Moon from its computed mantle HSE abundances. Current debate centres on whether the lunar HSE record is representative of its whole late accretion history or alternatively that these were only retained in the mantle and crust after a particular time, and if so, when. Here we employ improved Monte Carlo impact simulations of late accretion onto the Moon and Mars and present an updated chronology based on new dynamical simulations of leftover planetesimals and the E-belt – a now-empty hypothesised inner extension of the asteroid belt ( Bottke et al., 2012 ). We take into account the inefficient retention of colliding material. The source of impactors on both planetary bodies is assumed to be the same, hence we use constraints from both objects simultaneously. We compute the crater and basin densities on the Moon and Mars, the largest objects to strike these planets and the amount of material they accreted. Outputs are used to infer the mass in leftover planetesimals at a particular time period, which is then compared to the lunar HSE abundance. From this estimate we calculate a preferred lunar HSE retention age of ca. 4450 Ma which means that the modelled lunar mantle HSE abundances trace almost all of lunar late accretion. Based on our results, the surface ages of the lunar highlands are at least 4370 Ma. We find that the mass of leftover planetesimals with diameters Di  Mojzsis et al., 2019 ).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    104
    References
    0
    Citations
    NaN
    KQI
    []