Sniffing Entrapped Humans with Sensor Arrays

2018 
Earthquakes are lethal natural disasters frequently burying people alive under collapsed buildings. Tracking entrapped humans from their unique volatile chemical signature with hand-held devices would accelerate urban search and rescue (USaR) efforts. Here, a pilot study is presented with compact and orthogonal sensor arrays to detect the breath- and skin-emitted metabolic tracers acetone, ammonia, isoprene, CO2, and relative humidity (RH), all together serving as sign of life. It consists of three nanostructured metal-oxide sensors (Si-doped WO3, Si-doped MoO3, and Ti-doped ZnO), each specifically tailored at the nanoscale for highly sensitive and selective tracer detection along with commercial CO2 and humidity sensors. When tested on humans enclosed in plethysmography chambers to simulate entrapment, this sensor array rapidly detected sub-ppm acetone, ammonia, and isoprene concentrations with high accuracies (19, 21, and 3 ppb, respectively) and precision, unprecedented by portable sensors but required...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    62
    Citations
    NaN
    KQI
    []