Detection of molecular charge dynamics through current noise in a GaAs-based nanowire FET

2015 
The detection of static and dynamic molecular charge states using a GaAs-based nanowire field-effect transistor (FET) was investigated. Tetraphenylporphyrin (TPP) was put on the device as target molecules. After coating TPP on the FET, the drain current clearly decreased. On the other hand, the current largely increased by 405-nm light irradiation, indicating that TPP worked as a photo-excited donor. The light irradiation on the FET also induced a Lorentzian noise component, which was superimposed onto conventional 1/f noise. These behaviors were not seen in the gateless nanowire even with TPP. The obtained results indicated that electrical interaction between TPP and the nanowire was enhanced when a metal gate existed, although the channel was protected from TPP by the gate metal. We discuss the observed behaviors on the basis of a model where only TPP in the gate periphery modulated the channel potential and the drain current.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    5
    Citations
    NaN
    KQI
    []