Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest

2021 
Abstract The lack of robust scientific data still hinders estimates of soil and plant carbon (C) losses due to land-use changes in most dry tropical ecosystems. The present study investigated the effects of land-use and cover changes on total ecosystem C stocks in NE Brazil, aiming to quantify C losses after the removal of the native forest, known as Caatinga. The sampling design included the four main land-use/cover types (Dense Caatinga, Open Caatinga, Pastures and Crop fields) and the seven main soil classes (Arenosols, Acrisols, Regosols, Ferrasols, Luvisols, Planosols, and Leptosols), a combination that represents over 90% of the region. This design resulted in 192 sampling points (48 in each land-use), distributed proportionally to the area of occurrence of each soil class. In each sampling point, we determined C stocks in soil organic matter (SOM) and roots (to a depth of 1 m or rock layer), aboveground vegetation biomass (trees and herbs, separately), deadwood, and surface litter. Areas covered by Dense Caatinga store, on average, nearly 125 Mg ha−1 of C. Most of this C is stored in the soil organic matter (72.1%), followed by aboveground biomass (15.9%), belowground biomass (7.3%), deadwood (2.9%), litter (1.3%), and herbaceous biomass (0.5%). The substitution of Dense Caatinga to plant pastures and crop fields caused losses of >50% of ecosystem C stocks, reaching almost 65 Mg ha−1 of C, with nearly equal losses from the SOM and vegetation biomass compartments. Open Caatinga store nearly 30% less C than Dense Caatinga. Contrary to what was expected, the overall differences in C stocks between soil classes were not significant, with a few exceptions. We expect that the findings of this study will contribute to a more robust inventory of GHG emissions/removals due to land-use changes in NE Brazil and other dry tropical regions of the globe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    3
    Citations
    NaN
    KQI
    []