Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts.

2000 
The efficacy of cancer gene therapy using bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) enzyme/prodrug strategy is limited by the inefficiency of cytosine deaminase (CD)-catalyzed conversion of 5-FC into 5-fluorouracil (5-FU). We have shown previously that yeast CD (yCD) is more efficient at the conversion of 5-FC than bCD. In the current study, we hypothesized that the increased production of 5-FU by yCD would enhance the efficacy of the CD/5-FC treatment strategy by increasing the bystander effect as well as the efficacy of radiotherapy because of the radiosensitizing capacity of 5-FU. To test this hypothesis, we generated stable HT29 human colon cancer cell lines expressing either bCD (HT29/bCD) or yCD (HT29/yCD). The amount of 5-FU produced in HT29/yCD tumors after a single injection of 5-FC (1000 mg/kg, i.p.) was 15-fold higher than that produced in HT29/bCD tumors. In tumor-bearing nude mice, the average minimum relative tumor size (compared with pretreatment values) of HT29/bCD tumors treated with 5-FC and radiation (500 mg/kg i.p. and 3 Gy, 5 days a week for 2 weeks) was 0.55 ± 0.1, compared with 0.01 ± 0.01 in HT29/yCD tumors ( P = 0.002). Moreover, an increased cytotoxic and radiosensitizing effect of 5-FC on bystander cells was observed in vitro and in vivo when yCD was expressed in HT29 cells instead of bCD. In mice bearing HT29 tumors containing 10% HT29/yCD cells, the combined treatment resulted in a minimum tumor size of 0.20 ± 0.07 compared with 0.60 ± 0.1 in 10% HT29/bCD cells ( P < 0.001). These results demonstrate that the use of yCD in the CD/5-FC strategy has a high potential to improve the therapeutic outcome of combined gene therapy and radiotherapy in cancer patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    78
    Citations
    NaN
    KQI
    []