Microbiota Accelerates Age-Related CpG Island Methylation in Colonic Mucosa

2020 
DNA methylation is an epigenetic mark that is altered in cancer and aging tissues. The effects of extrinsic factors on DNA methylation remain incompletely understood. Microbial dysbiosis is a hallmark of colorectal cancer, and infections have been linked to aberrant DNA methylation in cancers of the GI tract. To determine the impact of microbiota on DNA methylation, we studied the methylomes of colorectal mucosa in germ-free (no microbiota) and specific-pathogen-free (controlled microbiota) mice, as well as in Il-10 KO mice (Il10-/-) which are prone to inflammation and tumorigenesis in the presence of microbiota. The presence of microbiota was associated with changes in 5% of the methylome and Il10-/- mice showed alterations in 4.1% of the methylome. These changes were slightly more often hypo than hypermethylation and affected preferentially CpG sites located in gene bodies and intergenic regions. Mice with both Il-10 KO and microbiota showed much more pronounced alterations, affecting 18% of the methylome. When looking specifically at CpG island methylation alterations, a hallmark of aging and cancer, 0.4% were changed by the microbiota, 0.4% were changed by Il10-/-, while 4% were changed by both simultaneously. These effects are comparable to what is typically seen when comparing colon cancer to normal. We next compared these methylation changes to those seen in aging, and after exposure to the colon carcinogen Azoxymethane (AOM). Aging was associated with alterations in 18% of the methylome, and aging changes were accelerated in the Il10-/- /SPF mice. By contrast, AOM induced profound hypomethylation that was distinct from the effects of aging or of the microbiota. CpG sites modified by the microbiota were over-represented among DNA methylation changes in colorectal cancer. Thus, the microbiota affects the DNA methylome of colorectal mucosa in patterns reminiscent of what is observed in aging and in colorectal cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []